
1 

Supplementary Information 

A hybrid reconstruction of the physical model with the deep-

learning that improves structured illumination microscopy 

Jianyong Wang1,2,9, Junchao Fan3,9, Bo Zhou1,9, Xiaoshuai Huang4,5 *, Liangyi Chen1,6,7,8 * 

1State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 

Institute of Molecular Medicine, Center for Life Sciences, College of Future Technology, Peking University, 

Beijing, China, 100871. 

2School of Software and Microelectronics, Peking University, Beijing, China, 102600. 

3Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing 

University of Posts and Telecommunications, Chongqing, China, 400065. 

4Biomedical Engineering Department, Peking University, Beijing, China, 100871. 

5International Cancer Institute, Peking University, Beijing, China, 100871. 

6PKU-IDG/McGovern Institute for Brain Research, Beijing, China, 100871. 

7Beijing Academy of Artificial Intelligence, Beijing, China, 100871. 

8National Biomedical Imaging Center, Beijing, China, 100871. 

9These authors contributed equally to this work. 

*e-mail: lychen@pku.edu.cn; hxs@hsc.pku.edu.cn 

  

mailto:lychen@pku.edu.cn
mailto:hxs@hsc.pku.edu.cn


2 

Supplementary Notes 

 

Supplementary Note 1 | Fidelity and regularization term reconstruction in TDV-SIM 

 

When imaged by SIM, the sample is excited by sinusoidal illumination patterns with different 

orientations and phases. Raw images contain both low and high-frequency information about the 

sample, and the high-frequency information is scaled and downshifted into the optical transfer 

function (OTF) of the imaging system19. To reconstruct an SR image, the high-frequency 

information must be separated from the raw data before being assembled with the low-frequency 

information18. Here, the SIM reconstruction is formulated as an optimization problem:  

 ( , ) ( )
f

D f gmi R fn    (S1) 

where f is the artifact-free SIM image to be estimated, g is the inverse Fourier transform of the 

assembled high and low-frequency bands, D(f, g) is the fidelity term based on the physics model 

of SIM, R(f) is the DL-based TDV regularization term27, and λ is the weight parameter of the 

regularization term.  

To construct the fidelity term, we extract SR components that have been shifted into the OTF due 

to pattern illumination as follows: 

 , ,( ) ( ) ( )d n d nG k S k p O k    (S2) 

where d and n represent the pattern orientations and the orders of the bands, pd,n represents the 

pattern wave vector, O(k) represents the OTF, and S(k) represents the Fourier transform of the 

spatial distribution s(r) of the fluorophores in the specimen. In the spatial domain, Eq. (S2) can be 

rewritten as 

 , ( ) [ ( ) ( )] ( )d ng r s r rt r H    (S3) 



3 

where H(r) is the point spread function (PSF) of the imaging system and t(r) is a phase factor that 

shifts the spectrum of s(r) in the Fourier domain: 

 ,2
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Since g can be obtained from Eq. (S3), we use the l2 norm of the difference between frequency 

bands extracted from the raw data and SR images as the likelihood term: 
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To simplify the calculation, we convert Eq. (S5) to the following form: 
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where  and -1 represent the Fourier and inverse Fourier transform, respectively. Thus, the 

gradient of the likelihood term can be calculated as follows:  
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where the superscript H means conjugate transpose. 

To construct the regularization term, we use TDV defined as the total sum of the pixel-wise deep 

variation:  

 (( )) TR f w Kf   (S8) 

where K is a learned convolution kernel with zero-mean constraint,  is a multiscale convolutional 

neural network, and w is a learned weight vector. The exact form of TDV is depicted in Fig. 1b. 

The multiscale convolutional neural network (CNN) comprises three U-Net type architectures. 

Each U-Net type architecture consists of five micro-blocks with a residual structure on three scales. 
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Next, to compute the gradient of the regular term, ∇R(f), we inverted its architecture, transformed 

the activation function into its gradient, and turned the convolution layer into the transpose 

convolution layer with the same kernel (Fig. 1b).  

 

Supplementary Note 2 | TDV-SIM excels in restoring structures of low SNR 

Because the ground truth (GT) images of the actual images were obtained by averaging the results 

of Wiener deconvolution and were not the actual fluorescence distribution, this may affect the final 

evaluations of SR reconstruction qualities by different methods. Therefore, we carried out a 

simulation experiment (Fig. S1). 

We processed the high-resolution (HR) images of the DIV2K dataset to obtain the pairs of 

simulated raw SIM images and GT images (Fig. S1a). We randomly cropped a square area from 

the RGB image, transformed it into a grayscale image, extracted its edges, and then multiplied the 

edge image and grayscale image to simulate the fluorescence distribution in the biological sample. 

Next, we multiplied the fluorescence distribution image with the illumination patterns of three 

directions and three phases to obtain the simulated SIM raw images. Then, the imaging process 

was simulated by multiplying the optical transfer function (OTF) of the wide-field (WF) 

microscope in the frequency domain. The acquisition process of the camera was simulated by 

downsampling. Finally, we add Gaussian noise with a mean of 0 and variance of 0.005 to the 

images. To obtain the simulated GT image, we multiplied the simulated fluorescence distribution 

image in the frequency domain by the equivalent OTF of SIM, which was obtained by moving the 

OTF of the WF microscope in the frequency domain according to the illumination parameters, 

then binarization, and multiplying by the apodization function, where the apodization function is 

defined as: 
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where k represents the frequency coordinate, kmax is the upper limiting frequency set, and the OTF 

radius. We re-divided the dataset into the training, validation, and test sets in a 6:1:2 ratio. 

We compared the performance of TDV-SIM with other reconstruction algorithms, including 

Wiener deconvolution16,17, HiFi-SIM20, Hessian-SIM18, scU-Net24, and DFCAN25 on the test sets 

(Fig. S1b). To evaluate the similarity of these SR images to GT, we calculated their structural 

similarity index (SSIM) and normalized root mean square error (NRMSE). In addition, to evaluate 

the artifacts, we performed Gaussian filtering on the GT images, segmented the foreground and 

background by thresholding, and then calculated the variance of the artifacts in the background 

region (Fig. S1c,d). Wiener deconvolution, HiFi-SIM, and Hessian-SIM produced more artifacts 

in the SR images, resulting in lower SSIM, higher NRMSE, and higher artifact variance. The 

artifact levels of images reconstructed by scU-Net and DFCAN are significantly lower and close 

to TDV-SIM. However, when we focus on the image's foreground and calculate the SSIM and 

NRMSE of the foreground region, we find that TDV-SIM has obvious advantages compared with 

other methods (Fig. S1e). These results suggest that TDV-SIM has an advantage in recovering 

intricate structures from low SNR raw data.  

 

Supplementary Note 3 | TDV-SIM excels in restoring regular structures of different SNRs 

without GT 

In practical applications, GT is unknown, and we used Wiener deconvolution as the reference for 

providing the real structure information. We compared the performance of TDV-SIM with other 

reconstruction algorithms, including Wiener deconvolution, HiFi-SIM, Hessian-SIM, scU-Net, 



6 

and DFCAN on actin (Fig. S2a). Actin filaments were labeled with Lifeact-EGFP and captured 

with a 2.7 ms exposure. During the 260 s recording, the fluorescence intensity of Lifeact-EGFP 

decreased by ~63% due to photobleaching (Fig. S2b). Compared with the conventional Wiener 

deconvolution, reconstruction algorithms based on the physical inversion model (HiFi-SIM, 

Hessian-SIM) can faithfully preserve the sample structure information but produce significant 

artifacts in the background regions (Fig. 2b and red arrows in Fig. 2e). In contrast, reconstruction 

algorithms based on DL (DFCAN, scU-Net) can suppress the artifacts effectively but predict 

structures deviating from the Wiener deconvolution (yellow arrows in Fig. S2c). As a 

representative method combining the physical model with the DL-based regularizer, TDV-SIM 

can preserve the sample structure information faithfully and suppress the artifacts effectively at 

the same time (Fig. S2c). In line with the visual inspection results, TDV-SIM restoration 

demonstrated the lowest artifact variance, which was more significant than the physical model-

based methods, and similar to that of the DL-based methods (Fig. S2d). In addition, TDV-SIM 

restoration demonstrated the lowest fluorescence signal variance along the actin filaments, which 

was more significant than the Wiener deconvolution and HiFi-SIM, and similar to that of Hessian-

SIM, scU-Net, and DFCAN (Fig. S2e). Collectively, these data indicate that TDV-SIM 

outperforms other algorithms in restoring high fidelity and low artifact SR images from raw data 

of different SNRs without GT. 
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Supplementary Figures 
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Fig. S1| TDV-SIM can restore the intricate structure of low SNR. (a) The entire pipeline of 

simulation dataset generation. (b) The SR images reconstructed by different reconstruction 

algorithms. (c) The pipeline of segmenting the foreground and background. (d) Statistical 

comparison of different reconstruction algorithms in terms of SSIM, NRMSE, and artifact variance. 

(e) The SSIM and NRMSE of the foreground region in the SR images reconstructed by different 

algorithms in terms of SSIM and NRMSE.  
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Fig. S2| TDV-SIM can restore regular structures of different SNRs without GT. (a) A 

representative SR image of Lifeact-EGFP labeled actin in a live COS-7 cell. (b) Time-dependent 

fluorescence bleaching of Lifeact-EGFP. (c) Magnified views of the boxed region in (a) 

reconstructed via Wiener deconvolution, HiFi-SIM, Hessian-SIM, scU-Net, DFCAN, and TDV-

SIM at 0 s and 260 s. (d) Artifact variances of the meshed region within actin filaments with 

different algorithms at 0 s and 260 s (n=10). (e) Fluorescence signal variance along the actin 

filaments with different algorithms at 0 s and 260 s (n=10). Scale bars: (a) 1 μm; (c) 0.5 μm. 
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Fig. S3| Pure DL-based methods infer actin filaments incorrectly at regions with extremely 

low fluorescence intensity. Yellow arrowheads indicate the inaccurate reconstructions of pure 

DL-based methods. Scale bars: 1 μm. 
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Fig. S4| TDV-SIM outperforms rDL SIM in suppressing artifacts and hallucinations. (a) 

Microtubules from the BioSR dataset under the SR-SIM were reconstructed with different methods. 

The white boxed region in (a) indicates that punctuated artifacts in rDL SIM reconstructions may 

be suppressed with a notch filter (NF). (b) Magnified views of the yellow boxed regions in (a) 

reconstructed by Wiener deconvolution, rDL SIM, NF-rDL SIM, and TDV-SIM. The GT images 

are shown as references. Yellow arrowheads indicate microtubules absent in NF-rDL SIM 

reconstructions, which was confirmed by the missing spikes in corresponding fluorescence profiles 

along the yellow lines in (a) (bottom). (c) Artifact variances of the background regions in different 

reconstructions (n=20). (d) SSIM of microtubules in different reconstructions (n=20). Scale bars: 

(a) 1 μm; (b) white 0.5 μm. (b) black, axial: 0.2 arbitrary units (a.u.); lateral: 0.2 μm. 


